# Photodisintegration of Lithium Isotopes





Department of Physics and Engineering Physics

University of Saskatchewan

Ward Andrew Wurtz 15 February 2009



lithium-6 nucleus







- Introduction
- The Experiment
- Continuing Analysis and Preliminary Results
- Concluding Remarks

#### Introduction: The Photodisintegration of Lithium

- There are two lithium isotopes: <sup>6</sup>Li and <sup>7</sup>Li
- Photodisintegration involves breaking apart a nucleus using a gamma-ray photon
- Traditionally the photodisintegration of lithium has been studied theoretically using cluster models: is <sup>6</sup>Li more the <sup>2</sup>H+<sup>4</sup>He or <sup>3</sup>H+<sup>3</sup>He?

### Introduction: Lorentz Integral Transform

- Nucleons interacting through a potential model
- Direct computations involve a bound initial state being transformed to a continuous final state
- The Lorentz Integral Transform (LIT) transforms the unbounded problem into a bounded one

 $\sigma(E_{\gamma}) = 4\pi^2 \alpha E_{\gamma} R(E_{\gamma})$ 

 $= \int dE$ 

 $R(E_{\gamma})$ 

 $(E_{n} - s_{p})^{2} + s_{p}^{2}$ 

### Introduction: The LIT and <sup>6</sup>Li

- Bacca, *et al.*, Phys. Rev. C 69, 057001
- Prediction of the total photodisintegration cross section using semi-realistic potentials
- Agreement with experiment is very poor
- New experimental data needed



### Introduction: The LIT and <sup>7</sup>Li

- Bacca, *et al.*, Phys. Lett.
  B 603, 159 (2004).
- Better agreement
- We cannot construct the total cross section using only neutrons
- We can construct cross sections for some reaction channels
- Very useful for motivating future predictions similar to those done for <sup>4</sup>He



## The Experiment: Apparatus



2.46

### The Experiment: Measured Quantities





and provide the second se

### The Experiment: Data Acquisition

- Four days of beam time: 30 June to 3 July 2008
- Obtained <sup>6</sup>Li data at 8, 9, 10, 11, 12, 13, 15 and 15.6 MeV
- Obtained <sup>7</sup>Li data at 10, 11, 12, 13 and 15 MeV
- Used a planar wiggler (OK-4) to generate linearly polarized photons

- Three days of beam time: 1 Oct to 3 Oct 2008
- Obtained <sup>6</sup>Li and <sup>7</sup>Li data at 20, 25, 30 and 35 MeV
- Used a helical wiggler (OK-5) to generate circularly polarized photons

## Analysis and Results: <sup>6</sup>Li Neutron Kinetic Energy Spectra

- Neutron kinetic energy spectra for detectors at 90<sup>o</sup> to the beam axis and a photon energy of 13 MeV
- Red: Along polarization vector
- Blue: Right angle to polarisation vector



## Analysis and Results: <sup>7</sup>Li Neutron Kinetic Energy Spectra

- Neutron kinetic energy spectra for detectors at 90<sup>o</sup> to the beam axis and a photon energy of 13 MeV
- Red: Along polarization vector
- Blue: Right angle to polarisation vector



### Analysis and Results: <sup>6</sup>Li Reaction Channels

- We model the photodisintegration of <sup>6</sup>Li below 15.8 MeV as occurring through the following four reaction channels (TUNL evaluation)
- The three body decay is energetically allowed but does not appear to contribution substantially

<sup>6</sup>Li +  $\gamma \rightarrow n$ +<sup>5</sup>Li(g.s)  $\rightarrow n + p$ +<sup>4</sup>He <sup>6</sup>Li +  $\gamma \rightarrow n$ +<sup>5</sup>Li(1.49)  $\rightarrow n + p$ +<sup>4</sup>He <sup>6</sup>Li +  $\gamma \rightarrow p$ +<sup>5</sup>He(g.s)  $\rightarrow n + p$ +<sup>4</sup>He <sup>6</sup>Li +  $\gamma \rightarrow p$ +<sup>5</sup>He(1.27)  $\rightarrow n + p$ +<sup>4</sup>He



### Analysis and Results: <sup>7</sup>Li Reaction Channels

- The highest energy neutrons are all due to the single neutron knockout reaction to the ground state of <sup>6</sup>Li
- Not all reaction channels produce neutrons
- Many reaction channels to contend with
- <sup>7</sup>Li +  $\gamma \rightarrow {}^{3}$ H+<sup>4</sup>He <sup>7</sup>Li +  $\gamma \rightarrow n + {}^{6}$ Li <sup>7</sup>Li +  $\gamma \rightarrow d + {}^{5}$ He  $\rightarrow n + d + {}^{4}$ He <sup>7</sup>Li +  $\gamma \rightarrow p + {}^{6}$ He



### Analysis and Results: <sup>6</sup>Li Data Separation



Kinetic Energy (MeV)

з





### Analysis and Results: <sup>7</sup>Li Data Separation









#### **Concluding Remarks**

- We have made unique measurements to obtain the cross sections of specific reaction channels for the photodisintegration of the lithium isotopes
- Analysis is proceeding well
  - Separated reaction channels for data below 16 MeV
  - Working on obtaining angular dependence of cross sections
  - Will obtain absolute cross sections for observable reaction channels

### Questions









5.46